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Determination of the quench velocity and rewetting temperature of hot surfaces:
Formulation of a nonisothermal microscale hydrodynamic model

M. Ben David,1 Y. Zvirin,2 and Y. Zimmels1
1Department of Civil Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel

2Department of Mechanical Engineering, Technion–Israel Institute of Technology, Haifa 32000, Israel
~Received 30 June 1998; revised manuscript received 17 February 1999!

A nonisothermal microscale model of the three-phase, solid-liquid-gas, contact zone is formulated in the
context of rewetting phenomena. The model incorporates hydrodynamics, heat transfer, interfacial phenomena,
and intermolecular long range forces, in a two-dimensional proximal region of the order of 1000 Å in width
and 100 Å in thickness. The model comprises scaled mass, momentum, and energy balances, and their
corresponding scaled boundary conditions. The small contact angles which are characteristic of rewetting
situations facilitate the use of the lubrication approximation, and the dynamics of the liquid and gas phases is
decoupled by applying the one-sided simplification. The microscale hydrodynamic model reflects the strong
effect of the solid-liquid interactions on the film profile, and the attendant flow and thermal fields. Thinner
films having smaller contact angles involve stronger solid-liquid attraction forces, and consequently they
exhibit higher rewetting temperatures and lower evaporation and vapor recoil effects. Thermocapillary and
evaporation and conduction effects are expressed by appropriate dimensionless numbers. A set of such num-
bers is defined in the context of the differential equations of the microscale model. This model covers the
hydrodynamic aspect of rewetting phenomena, which are also controlled by thermodynamic and macroscale
constraints. This calls for interfacing and appropriate combination between the microscale hydrodynamic
model, thermodynamics, and other macroscale rewetting models, for the determination of rewetting tempera-
tures and quench velocities of liquids on hot solid surfaces. This is addressed elsewhere, in subsequent papers
that follow this work.@S1063-651X~99!00506-1#

PACS number~s!: 44.35.1c, 05.70.Np, 68.10.Cr, 82.65.Dp
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I. INTRODUCTION

A. Problem description

Rewetting of hot surfaces is a process in which a liq
wets a hot solid surface by displacing its own vapor t
otherwise prevents contact between the solid and liq
phases. When a liquid contacts a sufficiently hot surfac
comes to a boiling point, and a vapor film, which separa
the liquid from the surface, is generated. As the surface c
off, the vapor film reaches a point where it can no longer
sustained. At this point, the vapor film collapses and surfa
liquid contact is reestablished. This phenomenon is ca
rewetting or quenching.

The temperature at the solid-liquid-vapor contact line,
the point where contact is reestablished, has been calle
different names, such as rewetting, quenching, sputtering
Leidenfrost temperature. Though these synonyms for the
wetting temperature do not have exactly the same phys
meanings~there is much confusion regarding this point!, this
temperature may generally be considered as being a thr
old temperature, above which liquid cannot wet the surfa
or alternatively, be in contact with it.

Rewetting phenomena of hot surfaces appear in m
physical processes and have important technological app
tions. Understanding of this phenomenon is called for
many engineering and scientific fields where it is enco
tered. For example, it is observed in cryogenic proces
filling of liquefied natural gas pipelines, and in high tempe
ture metallurgy. The rewetting phenomenon is known to
of paramount importance regarding the danger of loss
coolant fluid from the cooling system of a nuclear reactor
PRE 591063-651X/99/59~6!/6687~12!/$15.00
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such an accident occurs, the nuclear fuel rods may be
posed, with a due increase in their temperature. This ris
temperature can reach dangerous levels where melting o
rods becomes imminent. One way to avoid this situation is
flood the core of the reactor with water from top to botto
in a process which is called ‘‘top flooding.’’ If the revers
direction is used, then it is called ‘‘bottom flooding.’’ It i
therefore important to be able to predict, for these flood
processes, the velocity at which the quench front propaga
i.e., the rewetting velocity.

Several models for the rewetting velocity have been f
mulated in the last 30 years. Most of them require the
sumption of ana priori value for the quench~rewetting!
temperature at the three-phase, e.g., solid-liquid-vapor, c
tact line. There is no general method, as yet, to determ
this temperature, despite several attempts that have b
made, employing principles of thermodynamics, hydrod
namics, surface chemistry, and heat transfer. Using al
some of these principles still leads to predictions of differe
rewetting temperatures, for a specific solid-liquid system t
is operated under fixed conditions.

B. Models based on hydrodynamic
and thermodynamic theories

Reviews of rewetting models were given by Gerweck a
Yadigaroglu@1#, Carbajo and Siegel@2#, and Ben David@3#.
In the present work, reference is made to some specific m
els that are used at a later stage for comparison purposes
hydrodynamic approaches include identification of h
transport mechanisms between the wall, droplets imping
6687 ©1999 The American Physical Society
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6688 PRE 59M. BEN DAVID, Y. ZVIRIN, AND Y. ZIMMELS
on it, and the flow boundary layer. These hydrodynamic
proaches show that the heat flux attains a minimum, wh
depends on the flow rate, pressure, and vapor quality
specific temperature defined as the rewetting tempera
Agreement with experimental data is limited to a few ca
only. Other hydrodynamic models for rewetting temperatu
are based on instability limits such as the Rayleigh-Tay
limit. A force balance indicates that the perturbation wou
grow when the distance between the bubbles formed on
surface reaches a critical wavelength. Models that incl
the above considerations were developed by Berenson@4#,
Henry @5#, and Shoji and Takagi@6#. According to the Ber-
enson model, the minimum film boiling~MFB! temperature
for water, benzene, and ethanol, at atmospheric pressure
found to beTMFB5158, 180, and 178 °C, respectively. Du
ing rewetting, the hydrodynamic constraints must be satis
to allow contact of the liquid with the wall, and the interfac
temperature must not exceed the thermodynamic limit
wetting to occur. Different values of rewetting temperatu
can be expected from the different hydrodynamic approac
mentioned above. This may be due to differences in the m
els, or perhaps the existence of a range of the rewetting t
perature, rather than a single value.

Berenson@4# was the first to present an expression for t
minimum film temperature of pool boiling on a horizont
surface, that is based on the Taylor instability of the vap
liquid interface. In his theory, the spacing of the bubb
departing from the vapor film, and their growth rate, a
determined by this instability, and an analytical express
for the heat transfer coefficient near the minimum film bo
ing point is deduced. This heat transfer coefficient is co
pared with a correlation of the minimum heat flux, in ord
to obtain the following minimum film boiling temperatur
(TMFB) for a horizontal surface:

TMFB2Tsat50.127
rvHl

lv
Fg~r l2rv!

r l1rv
G2/3F s

g~r l2rv!G
1/2

3F mv

g~r l2rv!G
1/3

, ~1!

whereTsat, r, H, l, s, m, andg are the saturation tempera
ture, density, heat of evaporation, thermal conductiv
liquid-vapor interfacial tension, viscosity, and gravitation
acceleration, respectively. Subscriptsl, v, and s ~which is
used later! denote the liquid, vapor and solid phases.

The model of Berenson does not depend on the wall pr
erties. Nevertheless, its results are in good agreement
experimental data that were obtained with several flu
Henry @7# reported that the actual rewetting temperature v
ues for water, freon, sodium, and potassium are significa
higher. He performed a dimensional analysis for the pr
lem, using the infinite slab model~Carslaw and Jaeger!, @8#,
for temperature upon contact, microlayer evaporation,
the minimum film boiling temperature from the hydrod
namic model of Berenson@Eq. ~1!#, and obtained the follow-
ing correlation for the minimum film boiling temperature
pool boiling:
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TMFB2TMFB,B

TMFB,B2Tl
50.42S z

Hl

cp,s~TMFB,B2Tsat!
D 0.6

, ~2!

whereTMFB,B is the value ofTMFB from the Berenson model
Tl is the liquid temperature,cp is the heat capacity (cp,s is
the heat capacity of the solid!, andz is defined by

z5@lrcp# l /@lrcp#s . ~3!

Iloege, Rohsenow, and Griffith@9#, developed a correlation
for forced vertical flow, using water data and the Berens
correlation. Their result was given by

TMFB2Tsat5~TMFB,B2Tsat!~120.295x2.45!

3~110.279G0.49!, ~4!

where x is the exit quality andG is the mass flux, which
ranges between 54.2 and 135.6 kg/m2 s. De Salve and
Panella,@10# suggested an expression for the rewetting te
perature,Trew, based on hydrodynamic-thermodynamic co
siderations. It includes the maximum superheat tempera
of the liquid, Tmax, which is based on the Spinodal limi
from Spiegleret al. @11# and the interface temperature o
Baumeister and Simon@12#, with a correction factor for the
flow from Ref. @9#. Their expression is given by

Trew5Tl10.29~Tmax2Tl !~110.279G0.49!

3@exp~3.063106b!erfc~1751.5Ab!#21, ~5!

where b5@lrcp#s
21. A rewetting model based on micro

scopic considerations was proposed by Wayner@13#. This
model does not give a rewetting temperature, but it provi
an expression for the rewetting velocity. The latter is o
tained by modeling the fluid flow in the region, where th
evaporating liquid film and the vapor join the solid surfac
One of the parameters determining the flow characteristic
the disjoining pressure, which is the pressure drop, in a
fluid layer, caused by the London–van der Waals forces
tween the substrate and the fluid. The final expression for
rewetting velocity,U rew, based on the balance between th
disjoining pressure, the pressure gradient due to surface
sion, and the change in curvature of the liquid-vapor int
face, is

U rew5
2Add*

n lFr l S d2
d0

3 D1rscp,s«s~Trew2Tsd!/Hl G , ~6!

whered is the thickness of the fluid film,d* its derivative
with respect to the coordinate which moves with the quen
front, d0 the film thickness at the junction between th
evaporated region and the nonevaporated region,Ad a dis-
persion constant accounting for London–van der Wa
forces,n l the kinematic viscosity of the liquid,«s the thick-
ness of the lamina being cooled, andTsd the dry solid tem-
perature. It is rather difficult to compare this expression w
other known expressions for the rewetting velocity, beca
some of the parameters, such asAd andd, cannot be deter-
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PRE 59 6689DETERMINATION OF THE QUENCH VELOCITY AND . . .
mined with sufficient accuracy. Another disadvantage of t
expression is the arbitrariness in setting the value of«s .

Most of the existing rewetting velocity models use data
rewetting temperature, as a necessary input condition a
triple-phase contact region. A characteristic feature of me
ods for estimation ofTrew is that they are either thermody
namic or hydrodynamic. In contrast to this traditional d
tinction, the approach that is developed in this work, and
subsequent parts, determines the rewetting temperatur
the simultaneous combination of thermodynamic and hyd
dynamic aspects of rewetting. In this context a signific
advance is achieved through the microscaling of the rew
ting phenomenon, and the incorporation of physical para
eters of interfaces, such as contact angle and those relat
intermolecular forces. This focuses the treatment onto a
croscale region, adjacent to the three-phase contact line.
modeling method and its consequences are the subject
four-part series. The first part, that is presented here,
formulation of a non-isothermal micro-scale hydrodynam
model of the three-phase contact zone. The model is ba
on the conservation equations, and takes into account
above-mentioned phenomena, thermocapillary effects,
evaporation. Appropriate scaling, and the use of lubricat
approximation, facilitate substantial simplifications of t
governing equations, and boundary conditions. The sec
part@14#, includes the derivation of the interface equation,
solution, and a parametric study of the film thickness beh
ior. In the third part@15#, a microscale model for the conta
angleu is added, based on the method of Sullivan@16,17#.
By comparingu with the slope of the interface~using an
iterative algorithm!, a relation is obtained between the rewe
ting temperatureTrew and the quench velocityU rew. Finally,
these two parameters are uniquely determined in the fo
part @18#, by combining the microscale model with a ma
roscale one developed in Ref.@19#, which predictsU rew if
Trew is known. The results, which are presented in the th
and fourth parts@15,18#, cover a wide range of solid-liquid
properties.

II. THEORY

A. Scales of the rewetting region

In order to determine the dimensions of the investiga
region, use was made of the classification made in Ref.@20#.
They distinguished between four regions close to the con
line:

~1! A molecular domain of sizea ~'a few Å!, very close
to the triple line, where the continuum description brea
down.

~2! A proximal region~of lengtha/ue
2 and heighta/ue),

where the long-range van der Waals forces dominate (ue is
an equilibrium contact angle!. In this region, forces due to
capillary and Poiseuille friction effects are also significan

~3! A central region, where capillary forces and Poiseu
friction are the only important factors.

~4! A distal region, where macroscopic features~gravita-
tional forces, etc.! come into play.

In this work, the proximal region, where intermolecul
forces~mainly van der Waals! and capillary effects are sig
nificant, is selected for the development of a microscale
drodynamic model. van der Waals forces are long rang
s
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and they become dominant at distances which are in
range of 30– 104 Å. In their analysis of dynamic contac
lines, de Gennes, Hua, and Levinson@20#, showed that there
is no clear characteristic length for this range. In this conte
they suggested adopting the molecular sizea, and found it to
be convenient in scaling the various regions. This molecu
size is of the order of few Å. de Gennes@21# defined it by

a25
A

6ps
, ~7!

whereA is the Hamaker constant. He assumed the liquid fi
to be almost flat~the contact angle being very small,ue
!1), so that the vertical dimension~Z, perpendicular to the
solid! is very small in comparison to the lateral one~X, in the
flow direction!. de Gennes also showed that the long-ran
forces provide a natural cutoff for the singularity of the log
rithm expression of the total dissipation near the contact li
at fluid thickness,H(X), defined by

H~X!>ueL, L>a/ue
2. ~8!

The lengths given in Eqs.~8! determine the region wher
long-range van der Waals forces prevail. This work is co
cerned with the range in which these forces influence
rewetting process. To this end, employing the de Genn
classification of wetting regions facilitates the developm
of a microscale rewetting model.

Following de Gennes@21#, the crossover length which
relates to the expressions of disjoining pressure, in retar
and nonretarded situations, is about 100 Å. This means
for film thickness ofO(100 Å), the disjoining pressure, du
to long-range van der Waals forces, should be included in
force balance. Therefore, the momentum balance, whic
formulated in this work, includes a special term account
for this intermolecular force. Note that this ‘‘scale check
has been made for all fluids considered in this work. The
of de Gennes’ classification of wetting regions means tha
this work, the scaling lengths of the region investigated
those given by Eq.~8!.

B. Basic assumptions

The formulation of the microscale hydrodynamic model
based on the following guidelines and assumptions.

~1! The analysis is focused on the domain close to
contact line. The magnitude of this domain is of the order
100 Å in the vertical direction~film thickness! and 1000 Å in
the horizontal direction~parallel to the solid surface!.

~2! The region investigated contains a thin viscous liqu
film that is bounded by its vapor~gas phase!, and by a rigid
wall that is held at constant temperature. The justification
this assumption is given in Sec. II C 2.

~3! The liquid film is thin enough so that gravitationa
effects are negligible, and van der Waals attraction forces
significant. However, the film thickness still warrants a d
scription of the liquid as a continuum, and use of related fl
theories.

~4! The liquid film consists of an incompressible Newto
ian fluid.
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~5! The liquid properties, i.e., density, viscosity, etc., e
cept for the surface tension, do not change significantly w
temperature, and their values are taken as those under
ditions of saturation temperature and atmospheric pressu

~6! The liquid in the film evaporates. Consequently, the
is heat, mass, and momentum transfer at the vapor-liq
interface. The evaporation dynamics is described by bou
ary condition jumps.

~7! The density, viscosity, and thermal conductivity a
assumed to be considerably greater in the liquid as comp
to the vapor, so that the dynamics of the vapor can be
coupled from that of the liquid.

~8! Surface phenomena such as contact angle, capil
and thermocapillary effects are significant.

~9! The rewetting geometry is two-dimensional due to t
fact that the liquid film thickness is much smaller than
longitudinal dimension.

~10! The small slopes (u!1), which are characteristic o
the liquid-vapor interface in rewetting situations, allow t
use of the lubrication approximation.

~11! The three-phase contact line moves at a nearly c
stant velocity,U rew, so that in the moving frame of thi
contact line, the problem can be described as being qu
static.

~12! When the temperature at the three-phase contact
exceeds the rewetting temperature, which is independen
time and space, no solid-liquid contact is possible.

In contrast to the currently available models, this wo
presents hydrodynamic modeling of film spreading that ta
into account temperature and phase changes occurring a
the liquid-vapor interface, as well as heat and mass tran
between the liquid and vapor phases that interact acros
This approach treats the problem in a more general way
comparison with other known models, such as that of
Gennes@21#, which deals with the isothermal case.

C. Mathematical description of the problem

The configuration of the investigated region is shown
Fig. 1. Cartesian coordinates~X,Z! are used to describe th
two-dimensional system.

The liquid-vapor interface is expressed asZ5H(X,t),
and the film thicknessH is a function of the lateral coordi
nateX and timet. The outward normal and tangent to th

interface unit vectors,n̂ and t̂, are given by

FIG. 1. Sketch of the problem geometry.
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n̂5~2HX î1 k̂!~11HX
2 !21/2, t̂5~ î1HXk̂!~11HX

2 !21/2,
~9!

where î and k̂ are unit vectors in theX and Z directions,
respectively. The subscriptX refers to a partial derivative
with respect toX. This convention applies also for partia
derivatives with respect toZ andt.

1. Balance equations

The following equations express mass, momentum,
energy balances for the liquid. In the entire studied reg
~not including boundaries!, themass balanceis given by the
continuity equation

UX1WZ50, ~10!

whereU andW are the velocity components in theX andZ
directions. The forces acting in this region may be expres
by momentum balances: the horizontal direction~X!,

r l~Ut1UUX1WUZ!52PX1h l~UXX1UZZ!, ~11a!

and the vertical direction~Z!,

r l~Wt1UWX1WWZ!52PZ1h l~WXX1WZZ!,
~11b!

wherer l is the liquid density,h l is its dynamic viscosity,
andP is a generalized pressure that is defined by

P5Phyd1F. ~12!

Here Phyd is the hydrodynamic pressure, andF denotes a
potential associated with the van der Waals attraction forc
This potential gives rise to an extra body force,¹F, that
depends on the film thicknessH, cf. Ruckenstein and Jain
@22#:

F5F~H !52A/H31A/Z3. ~13!

Note that the second balance does not include the effec
“F nor that of gravity. There is no contribution of“F in the
Z direction becauseF is a function of the thicknessH
5H(X,t) only. Without loss of generality,Phyd is defined as
the pressure above that of the vapor,Pg , which is considered
as constant.

The energy balanceis expressed by

r lcp,l~Tt1UTX1WTZ!5l l~TXX1TZZ!, ~14!

whereT is the temperature, which depends on time and
sition.

2. Boundary conditions at the wall

At the solid boundaryZ50, the no-slip condition is as
sumed in theX direction, the nonpenetration condition
applied in the vertical direction, and the temperature is
sumed to be constant, so that

U50, W50, T5Tw at Z50. ~15!
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Note that the assumption of a constant wall temperatur
justified since any possible change in temperature, du
axial heat conduction, is much smaller compared with
error entailed in rewetting temperature measurements.
order of magnitude of this possible temperature change
been estimated as follows: Owen and Pulling@23# reported
that the sputtering process occurs in a range of 1–3 mm f
the quench front. The initial dry-solid temperature is usua
within the range of 102– 103 °C. Consequently, the averag
temperature gradient along the wall,DT/DX, is
O(105– 106 °C/m). In the new model, the scaleL, which
determines the horizontal length of the region considered
O(1000 Å). Accordingly, an estimate for the temperatu
variation along the wall may be expressed by

DTw>~DT/DX!L, ~16!

where DTw denotes a possible wall temperature variatio
Substitution of the above mentioned values into Eq.~16!
shows that the temperature change,DTw , is O(0.01–
0.1 °C), which is, indeed, less than the expected experim
tal error involved in measuringTrew.

3. Boundary condition at the liquid-vapor interface

At the interfaceZ5H(X,t), liquid-vapor jump condi-
tions, as formulated by Delhaye@24#, are applied. The liquid
is assumed to evaporate in a direction normal to the liqu
vapor interface. For the sake of convenience, the mass,
mentum, and energy balances are expressed through th
locity vector on both sides of the interface, i.e., in the liqu
and vapor phases. On the interface there is no mass acc
lation, so that the mass flux~relative to the interface! J is
expressed by the following jump mass balance:

J5r l~V l2VI !•n̂5rv~Vv2VI !•n̂ ~17!

whereV l and Vv are the velocity vectors of the liquid an
vapor, andVI is the velocity of the interface.

The energy balanceat the interface is expressed using
similar technique. In this case, the jump energy balance ta
the following form:

JH Hl1
1

2
@~Vv2VI !•n̂#22

1

2
@~V l2VI !•n̂#2J

1l l“T•n̂2lv“Tv•n̂12h l~ t̃l•n̂!•~V l2VI !

22hv~ t̃v•n̂!•~Vv2VI !50, ~18!

where t̃l and t̃v are the rate of deformation tensors in t
liquid and vapor, andTv is the vapor temperature.

The first term of Eq.~18! expresses the energy change d
to the evaporation process at the interface. It accounts fo
heat of evaporation and the kinetic energy differences ac
the interface. The second term represents the energy ch
occurring due to the conduction of heat across the interfa
The third and fourth terms represent the energy change
to dissipating shear forces in the liquid and vapor phase

The normal-stressboundary condition~jump momentum
balance! is given by
is
to
e
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J~V l2Vv!•n̂2~ T̃ l2T̃v!•n̂•n̂22Bs~T!50. ~19!

The first term of Eq.~19! stands for a component of momen
tum which arises due to the mass flux across the interfa
The second term is the normal component of the momen
which is due to the jump in the normal stress tensors betw
the two phases. HereT̃ l and T̃v are the stress tensors of th
liquid and vapor, respectively. The forces acting normally
the interface are balanced by the capillary force. The latte
defined by the surface tensions times twice the mean cur
vatureB of the interface, which is given by

2B5“•n̂. ~20!

The velocities both in vapor and liquid are assumed to
slow enough so that they can be treated as incompres
fluids. The stress tensor in the liquid is given as

T̃ l52PĨ12h l t̃l , ~21!

whereĨ is the identity tensor. A similar form can be used f
the vapor stress tensor, and the vapor pressurePv may be set
as a reference level, i.e., the ambient pressure.

The balance of forces tangent to the interface, constitu
the following shear stress boundary condition:

J~V l2Vv!• t̂2~ T̃ l2T̃v!•n̂• t̂1“s• t̂50. ~22!

The jump in shear stress, is balanced by the gradient of
surface tension. The change of the surface tension along
interface, owing to its dependence on the temperature, g
rise to thermocapillary effects that are included in th
boundary condition.

The surface tension is represented by a linear equatio
state as follows:

s~T!5ss2g~TI2Ts!, ~23!

where ss is the surface tension at the reference satura
temperatureTs and at the given system pressure. For nea
all common liquids,g is positive, so that increase of tem
perature leads to a decrease of the surface tension. Note
g is assumed to be practically a constant, so that its der
tives, with respect toX and Z in Eq. ~22!, are negligible in
comparison to those of the temperature.

The mass fluxJ is expressed by the following linearize
constitutive equation, that is derived from the kinetic theo
~cf. Palmer@25#!

J5S arvHl

Ts
3/2 D S M

2pRg
D 1/2

~TI2Ts!. ~24!

It depends on the local interface temperatureTI , the molecu-
lar weightM, the universal gas constantRg , and the dimen-
sionless accommodation coefficient,a ~whose value is close
to 1 for most commonly used liquids!.
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4. One-sided model simplification

The boundary conditions at the liquid-vapor interface, i
Eqs. ~17!–~19! and ~22!, describe mass, energy and for
balances between the liquid and vapor. In other words,
liquid behavior is conjugate to that of the vapor. Howev
the values of thermophysical properties such as density,
cosity, and thermal conductivity are by far larger in the li
uid as compared to those in the vapor. Therefore, follow
our basic assumption@No. ~7! in Sec. II B#, the balance equa
tions are simplified, e.g., according to Burelbach, Banko
and Davis@26#. As an example, only the energy bounda
condition @Eq. ~18!# is derived here in detail. As the sam
simplifications have been applied to the other boundary c
ditions at the interface@see Eqs.~19! and ~22!#, only their
final forms are presented below.

The energy balance equation~18! is transformed into a
simpler form by applying several algebraic steps. The vel
ity differences are expressed in terms of the mass flux
density by substitution of the jump mass balance from
~17!. Assuming that“Tv•n̂, t̃l•n̂, andt̃v•n̂ are all bounded,
and rearranging the terms, gives

JH Hl1
1

2 S J

rv
D 2

2
1

2 S J

r l
D 2J 1l l H“T•n̂2

lv

l l
“Tv•n̂J

12h l S rv

r l
D ~ t̃l•n̂!•S J

rv
D22S hv

h l
D ~ t̃v•n̂!•S J

rv
Dh l50.

~25!

By applying the limits such aslv /l l→0, this equation is
reduced to

JH Hl1
1

2 F J

rv
G2J 52l l“T•n̂. ~26!

Equation~26! states that the heat conducted across the film
used to vaporize the liquid and supply kinetic energy to
vaporized molecules.

For the normal-stress balance, equation~19!, the simpli-
fied form of the boundary condition is obtained as

2
J2

rv
2T̃•n̂•n̂52Bs~T!, ~27!

where the term proportional toJ2 is due to the jump in den
sities across the interface. Since the mass balance acros
interface should be conserved, the jump in densities is tra
lated to a jump in velocities. This jump creates the force t
pushes the liquid down toward the solid. Burelbach, Bank
and Davis@26#, termed this phenomenon ‘‘vapor recoil,
which may cause the film to rupture.

For the shear-stress balance equation~22!, using the no-
slip boundary between the two viscous fluids gives

~V l2Vv!• t̂50, ~28!

and, applying the above assumption, i.e., regarding the ju
in velocities, a simpler form is obtained:
.,

e
,
is-

g

,

n-

-
d
.

is
e

the
s-
t

f,

p

T̃•n̂• t̂5“s~T!• t̂. ~29!

Thus the dynamics of the vapor is decoupled from that of
liquid. This results in the ‘‘one-sided model’’; see Ref.@27#.
Note that the mass balance equation~10!, and the linearized
constitutive equation~24! remain unchanged.

The boundary conditions at the interface are presente
their general form. In the following, they are described mo
explicitly, i.e., the tensorT̃ and terms such as“s(T)• t̂ and
“s(T)•n̂ are each presented in a more detailed form.

5. Normal and shear stress boundary conditions: Explicit forms

Equation~27! includes terms such asT̃•n̂•n̂, and the cur-
vature 2B of the two-dimensional interfaceZ5H(X,t).
Substitution of the expression for the normal unit vectorn̂
@Eq. ~9!# in Eq. ~20! gives

2B52
HXX

~11HX
2 !3/2. ~30!

The explicit form of the stress tensor component@Eq. ~21!#
for a Newtonian liquid in a film with thicknessH, is

T̃•n̂•n̂52P1
2h l@UX~12HX

2 !1~UZ1WX!HX#

~11HX
2 !1/2 .

~31!

In the model which is developed here, the interface is limi
to small slopes (u>HX!1). The final form of the normal-
stress boundary condition is obtained by substitution o
linearized form of Eqs.~30! and ~31! into Eq. ~27!, as fol-
lows:

2
J2

rv
1P12h l@UX1~UZ1WX!HX#52s~T!HXX .

~32!

The shear-stress boundary condition of Eq.~29! is consid-
ered next. The stress tensor componentT̃•n̂• t̂ is written at
the interface, in terms ofZ5H(X,t):

T̃•n̂• t̂5
h l@~UZ1WX!~12HX

2 !24UXHX#

~11HX
2 !1/2 . ~33!

Upon using the expression for the surface tension,@Eq. ~23!#,
and that of the tangent unit vectort̂ @Eq. ~9!#, the explicit
result for the second term in Eq.~29! is obtained as

“s~T!• t̂52
g~TX1TZHX!

~11HX
2 !1/2 . ~34!

Substitution of expressions~33! and ~34! into Eq. ~29!, and
using the assumptionHX!1, gives the shear stress balan
in the following form:

h l~UZ1WX24UXHX!52g~TX1TZHX!. ~35!



ve
t

nt

e

ia
r

fa
ss
t t
-
e
n
ta

i-

u
s,
c

e
ic
no

a
ne

nd

,

T
ie
io

nc
t

ce
s. In
that
ob-

e
e

d
e

ed

ity
hori-
c-
-

PRE 59 6693DETERMINATION OF THE QUENCH VELOCITY AND . . .
6. Kinematic boundary condition: Explicit form

The jump mass balance specified in Eq.~17! leads to the
kinematic condition at the interface, where a particle mo
with the velocityVI . The modulus ofVI is the same as tha
of the interface velocity,dH/dt. The boundary condition for
the mass balance involves mass transport across the i
face, with the following flux:

J5r l~V l2VI !•n̂5
r l~Ht2UHX1W!

~11HX
2 !1/2 . ~36!

The small slope assumption leads to the following simplifi
form for the kinematic boundary condition:

J5r l~2Ht2UHX1W!. ~37!

At this stage, we have a system of four partial different
equations~10!, ~11!, and~14!: mass, forces, and energy; fou
boundary conditions representing balances at the inter
@Eqs.~17!–~19! and ~22!#: mass, shear stress, normal stre
and energy balances; and three boundary conditions a
solid surface@Eq. ~15!#, specifying a no-penetration bound
ary, a no-slip boundary, and a fixed wall temperature. In S
II D, the model is further simplified, by using the lubricatio
approximation and an appropriate scaling, so as to facili
analytical solution of its equations.

D. Scaling of variables

The small slope of the liquid-vapor interface (HX!1)
allows the adoption of the well-known lubrication approx
mation. The contact angleu is derived asHX and rescaled
through a reference contact angleuo . Its value is very small
(uo!1), and, for convenience, it can be selected to be eq
to ue @see Eq.~8!#. All the variables in the balance equation
that are functions ofu are introduced by their asymptoti
expansions, i.e., as a function ofuo . Following the scaling
step, the leading-order terms in the equations, asuo→0, con-
stitute the ‘‘lubrication approximation.’’

The space variables~X,Z! are scaled according to the d
Gennes@21# methodology. He argued that for microscop
films, which spread with a moving contact line, there is
characteristic length. Therefore, the molecular sizea is a
convenient choice for rescaling, and the lengths in theX and
Z directions are scaled by the dimensions given in Eq.~8!.
The time scale is constructed by combining the length sc
a with an estimate of the average velocity of the contact li
Uo . This velocity relates to the contact angle throughUo

>Kuo
m , where K and m are constants; see Ehrhard a

Davis, @28# and de Gennes, Hua, and Levinson@20#. The
scaling considerations applied here are similar to those
Ehrhard and Davis@28# and Burelbach, Bankoff, and Davis
@26#.

Conservation of mass determines the velocity scales.
pressure scale is obtained by balancing the pressure grad
and viscous terms, which is common practice in lubricat
flows. Note that the generalized pressureP includes the van
der Waals intermolecular forces through the potential fu
tion F @Eq. ~12!#. The temperature scaling is chosen so as
s

er-

d

l

ce
,
he
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te

al

le
,

of

he
nts
n

-
o

allow the largest possible dimensionless~unit order! tem-
perature difference.

In the following, the various variables of the balan
equations are scaled according to these consideration
this way, a new workable set of dimensionless variables,
characterizes the rewetting problem in microscales, is
tained.

1. Length scales

The space variableX varies in the range 0<X<L. Be-
cause of the small slope,uo!1, the expected height of th
interface is of the order ofLuo ; therefore, the space variabl
Z is scaled using this length. The dimensionless lengthsx and
z are thus defined by

x5
X

L
, z5

Z

Luo
, ~38!

where L5a/uo
2 as in Eq.~8!, and uo is the contact angle

which, in rewetting situations, is typically very small~for
example,uo'10). Note thatuo is defined arbitrarily as a
scaling equilibrium contact angle.

2. Time scale

According to de Gennes@21# and de Gennes, Hua, an
Levinson,@20#, very thin films that spread on a solid surfac
advance with an average velocityUo>Kuo

m , wherem>1
andK.0 are empirical constants, anduo>0 is the dynamic
contact angle. Note that this constitutive relation was prov
theoretically by de Gennes@21#. The power ofm53 is sug-
gested by data of Hoffman@29# and Tanner@30#. The coef-
ficient K is of the order of 103 (m/sec). The time scalet is
expressed as the ratio of the horizontal domain lengthL and
the average contact line velocityUo :

t5
L

Kuo
m . ~39!

3. Velocity scale

According to these time and length scales, the veloc
scales are determined by the conservation of mass. The
zontal velocityU is scaled by the average contact line velo
ity, so thatu5U/Uo . The continuity equation in dimension
less form is given by

]u

]x
1

]w

]z
50. ~40!

This facilitates scaling of the velocity componentw as

w5
W

Kuo
m11 . ~41!

The dimensionless form of the continuity equation~40! is
obviously the same as that of the dimensional one@Eq. ~10!#.
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4. Pressure scale

The pressure scale is obtained through the following b
ance of pressure and viscous forces:

h lUZZ5
]P

]X
. ~42!

Rescaling this balance gives

]2u

]z2 5
]p

]x
, ~43!

where the pressurep has the following form:

p5S Luo
22m

h lK
D P. ~44!

Similarly, rescaling of the potential functionF ~due to van
der Waals forces! yields

f5S Luo
22m

h lK
DF. ~45!

In order to preserve the form of Eq.~13!, a dimensionless
potential functionf is defined by

f5
Ā

h3 , Ā5~6ph lKL2uo
m11!21A, ~46!

h5H/Luo , ~47!

whereh and Ā are the dimensionless film thickness~height
of the interface! and Hamaker constant, respectively. A
cording to Eq.~12!, the dimensionless pressure is then e
pressed by

p5phyd1f5phyd2Ā/h31Ā/z3. ~48!

5. Temperature scale

The temperature field is scaled through

Q5
T2Ts

Tw2Ts
. ~49!

The maximum temperature difference for the problem un
consideration isDT5Tw2Ts , so thatQ I<Q<1, whereQ
andQ I are the scaled temperature, below and at the surf
respectively.

A summary of the dimensionless~scaled! variables that
characterize the rewetting problem is given as follows:

x5
X

L
, z5

Z

Luo
, t5

Kuo
m

L
t,

u5
U

Kuo
m , w5

W

Kuo
m11 , p5

Luo
22m

h lK
P, f5

Luo
22m

h lK
F,

~50!
l-

-

r

e,

Q5
T2Ts

Tw2Ts
, h5

H

Luo
, Ā5

A

6ph lKL2uo
m11 .

The variables summarized in Eq.~50! are used, in this work,
to formulate the dimensionless balance equations and bo
ary conditions of the new microscale hydrodynamic mod

E. Scaling of balance equations and lubrication approximation

In this section, the equations of momentum and ene
balance are rewritten in terms of the dimensionless varia
of Eq. ~50!. For the sake of brevity, only the treatment of th
horizontalx component of the momentum balance is sho
in detail, whereas the other equations are given only in th
final form.

The dimensionless mass balance is given by the cont
ity equation~40!. Next the momentum balance~or alterna-
tively force balance! in the X direction,@Eq. ~11a!# is trans-
formed into a dimensionless form. Substitution of t
complete set of relevant parameters from Eq.~50! into this
equation gives

r l

K2uo
2m

L F]u

]t
1u

]u

]x
1w

]u

]zG
52

h lK

L2uo
22m

]p

]x
1

h lKuo
m

L2 F]2u

]x2 1
1

uo
2

]2u

]z2G .
~51!

Following the multiplication of Eq.~51! by the factoruo
22m ,

it turns out that the terms on the left-hand side are mu
smaller than those on the right-hand side. Furthermore,
second order derivative of the velocity,u, with respect tox,
on the right-hand side of Eq.~51!, is negligible. The result is
that foruo→0, Eq.~51! reduces to a form that is dictated b
the leading order terms as follows:

2
]p

]x
1

]2u

]z2 50. ~52!

Equation~52! implies that the pressure and the intermolec
lar interaction forces, which are represented throughpx , are
balanced with the viscous forces. Note thatfx is part ofpx ;
see Eq. 12. This form of the momentum equation is a re
of what is known as the ‘‘lubrication approximation.’’

Application of the same procedure to the momentum b
ance in thez direction @Eq. ~11b!# gives

r luo
m14F]w

]t
1u

]w

]x
1w

]w

]z G
52

h l

LK F]p

]z
1uo

4 ]2w

]x2 1uo
2 ]2w

]x2 G . ~53!

An order of magnitude analysis of the last equation sho
that the pressure gradient must beO(uo

2) for m>1, and
therefore, whenuo→0, it also tends to zero. Hence, at th
limit

]p

]z
50. ~54!



,

it
ro

c
a

ti

ro-
all,

c-

rm
re

s

PRE 59 6695DETERMINATION OF THE QUENCH VELOCITY AND . . .
The energy balance equation~14! is treated in the same way
and the result is

r lcp,lKuo
m14F]Q

]t
1u

]Q

]x
1w

]Q

]z G5
l l

L Fuo
2 ]2Q

]x2 1
]2Q

]z2 G .
~55!

Whenuo→0, this equation is reduced to

]2Q

]z2 50. ~56!

This form of the energy equation means that foruo→0, the
dominant mechanism of heat transport is by conduction, w
subsequent superheating of the liquid and evaporation ac
the interface.

In summary, a substantial simplification of the balan
equations is achieved by applying the lubrication approxim
tion. Effects such as time dependence, nonlinear convec
terms, and the coupling of the thermal and hydrodynam
re
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fields were all eliminated. In Sec. II F, the same scaling p
cedure is applied to the boundary conditions at the solid w
z50, and at the interface,z5h(x,t).

F. Scaling of boundary conditions

At the solid surface, the dimensionless form of the velo
ity and temperature boundary conditions,@Eq. ~15!# are as
follows:

u50, w50, Q51 at z50. ~57!

At the interface, which is represented in dimensionless fo
by z5h(x,t), there are four boundary conditions that a
scaled in the following.

1. Scaling of normal-stress balance

The scaling of Eq.~32! using the dimensionless variable
of Eq. ~50! gives
2
L

uo

J2

rv
1H h lK

uo
32m p12h lKuo

m21F]u

]x
1S ]u

]z
1uo

2 ]w

]x D ]h

]x G J 52
]2h

]x2 s~Q!. ~58!
res-

-

al-
The terms of Eq.~58! include different powers ofuo . The
leading order terms of the asymptotic equation, which p
vails asuo→0, yield the following reduced form:

2
L

uo

J2

rv
1

h lK

uo
32m p52

]2h

]x2 s~Q!. ~59!

This relationship includes the mass fluxJ and the surface
tensions~Q!, that will now be scaled and then expressed
a dimensionless form. The former is scaled through a re
ence mass flux,Jo , which is due to the vaporization proce
that occurs at the interface.Jo is defined using a film, of
reference thicknessLuo , that evaporates due to heat condu
tion which is driven by a temperature differenceDT5Tw
2Ts .

The heat flux

qo5
l lDT

Luo
~60!

relates these two processes by the following simple ene
balance:

qo5JoHl5
l lDT

Luo
. ~61!

Thus the dimensionless mass fluxj is obtained as

j 5
J

Jo
5

JHl

qo
5

LuoHl

l lDT
J. ~62!
-

r-

-

y

Accordingly, the constitutive expression~24! for J is also
expressed in a dimensionless form by inserting the exp
sion of the nondimensional interface temperatureQ I and di-
viding by Jo ,

j 5NQ I , ~63!

where the dimensionless coefficientN is given by

N5FLuoarvHl
2

l lTs
3/2 G F M

2pRg
G1/2

. ~64!

The surface tension,s(T) @Eq. ~23!# is expressed as a func
tion of the dimensionless temperature,Q I :

s~Q!5ss~12FQ I !, ~65!

whereF is the capillary change factor:

F5
gDT

ss
. ~66!

Introduction of the expressions for the surface tensions~Q!
@Eq. ~65!# and the dimensionless mass fluxj @Eq. ~63!#, in
conjunction with Eqs.~60! and~62!, into Eq.~59!, yields the
following dimensionless expression for the normal stress b
ance:

2S j21Cp52
]2h

]x2 ~12FQ I !, ~67!
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where the dimensionless variablesS andC are given by

S5S l lDT

LuoHl
D 2S L

ssrvuo
D , ~68!

C5
h lK

ssuo
32m 5

h lUo

ssuo
3 . ~69!

It is noted that when there is no temperature gradient~iso-
thermal case!, S and F vanish, so that the Young-Laplac
term prevails at the liquid-vapor interface.

The dimensionless numberS @see Eq.~68!# describes the
effect of kinetic energy of liquid particles that vaporiz
through the interface. Mass conservation, and the steep
dient of density across the interface, impose a steep grad
of velocity. At the interface, vapor particles are much fas
than those of the liquid. Consequently, the interface
‘‘pushed back,’’ and this produces a reverse reaction fo
that may drive the interface to exhibit significant perturb
tions. This effect was termed ‘‘vapor recoil’’ by Burelbac
Bankoff, and Davis@26#. The term in the first parentheses
Eq. ~68! expresses the ratio between the heat transmitted
conduction and that by evaporation. The dimensionl
groupS expresses the evaporation process through the in
face, subject to the normal stress boundary condition.
pressure term of Eq.~67! is multiplied by the dimensionles
capillary numberC, which is defined as the ratio of the vis
cous effects and surface tension effects of the moving c
tact line.

The term on the right-hand side of Eq.~67! is the linear-
ized curvature multiplied by the factor accounting for var
tion of the surface tension with temperature. The existenc
a temperature gradient along the interface produces a c
sponding gradient of surface tension.

2. Scaling of shear stress

The result of rescaling the shear stress balance@Eq. ~35!#
with the variables from Eq.~50!, lettinguo→0, and selecting
only leading order terms, gives

Cuo
2

F

]u

]z
52S ]Q

]x
1

]Q

]z

]h

]xD at z5h. ~70!

The dimensionless numberC/F expresses the thermocap
lary effect. In this context, a variable surface tension is
pected to develop concurrent with the occurrence of a t
perature gradient along the interface. At larger distan
from the three-phase contact line, the decrease in temp
ture produces an increase in the surface tension. The
perature induced gradient of surface tension acts to ‘‘pu
the advancing fluid backward~i.e., opposite to the film ve-
locity U!. This hinders the film movement. The groupC/F
describes the ratio between the viscosity effects and the f
tional thermal change in the surface tension. Note that,
isothermal fields, the right-hand side of Eq.~70! vanishes,
and the dimensionless shear stress boundary condition i
duced touz50 ~the vapor seems to be passive!.
ra-
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3. Scaling of energy balance

Rescaling the energy balance of Eq.~26! in the same way,
i.e., using the rescaled mass fluxj through the constitutive
relation ~63!, letting uo→0, and leaving only the leading
order terms, give

NQ I@11G~NQ I !2#1S ]Q

]z D
z5h

50, ~71!

where the dimensionless groupG is defined by

G5
1

2Hl
3 S gDT

rvLuo
D 2

. ~72!

The first term of Eq.~71! represents the heat consumed
evaporation, the second term refers to the kinetic energ
the vapor particles, and these two terms are balanced
the heat conducted across the film. This form of bound
condition is nonlinear in the temperature,Q I . Comparison of
the order of magnitude of these three energy compon
shows that the kinetic energy term is small relative to
evaporation term, so that Eq.~71! may be linearized. Con-
sider, for example, the groupe5G(NQ I)2 for the case of
water. The dimensionless numbersG andN are found to be
O(1021). The dimensionless interface temperature var
between zero and one, so thatQ I<1. It follows, then, that
e>O(1023) can be neglected with respect to 1. For furth
details, see Burelbach, Bankoff, and Davis,@26#. The result
of neglecting the kinetic energy term in Eq.~71! yield:

NQ I1S ]Q

]z D
z5h

50. ~73!

The latter boundary condition implies that the energy b
ance at the interface is dominated by conductive heat tran
and evaporation.

4. Scaling of mass balance (the kinematic condition)

Rescaling of the mass balance@Eq. ~37!#, and using the
lubrication approximation, gives the following dimensionle
kinematic boundary condition:

E j5w2
]h

]t
2u

]h

]x
, ~74!

where the dimensionless groupE is defined by

E5S l lDT

r lHlLUouo
2D . ~75!

E describes a ratio of heat flow by conduction and evapo
tion. Expressingj in Eq. ~74! by its constitutive relation@Eq.
~63!# gives

ENQ I5w2
]h

]t
2u

]h

]x
. ~76!
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TABLE I. System of simplified dimensionless equations for the rewetting problem.

Mass balance—continuity ux1wz50
Momentum—in thex direction uzz5px

Momentum—in thez direction pz50
Energy balance Qzz50
Liquid-solid potential of interaction f5Ā/h3 ~included in generalized pressure,p!

Boundary conditions at the no slip u50
solid liquid interface,z50 impermeable wall w50

wall temperature Q51

Liquid-vapor interface jump Normal stress balance 2S j21Cp52hxx(12FQ I)
conditions,z5h(x,t),

Shear stress balance
Cu 0

2

F
uz52(Qx1Qzhx)

Linearized energy balance NQ I52Qz

Mass balance ENQ I5w2ht2uhx

Constitutive relation for mass flux:j 5NQ I

Dimensionless numbers

N5SLuoarvHl
2

llT s
3/2 D S M

2pRg
D 1/2

C5S h lUo

ssuo
3 D

F5S gDT

ss
D S5S l lDT

LuoHl
D 2S L

ssrvuo
D

E5S l lDT

r lHlLUouo
2D Ā5

A

6ph lUoL2uo
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If there is no evaporation, or the system is isothermal, i
DT50, then the interfaceh(x,t) behaves as if it is imper
meable to matter,E50, and the kinematic boundary cond
tion reduces to its familiar form:

]h

]t
5w2u

]h

]x
. ~77!

Table I summarizes the set of dimensionless balance e
tions ~mass, momentum, and energy!, and their related
boundary conditions, in their final simplified form.

This concludes the formulation of the nonisothermal m
croscale model of the three-phase contact zone. The
proach was based on hydrodynamics, heat transfer, su
tension, and intermolecular long-range forces. The theo
cal model consists of a system of differential equations
mass, momentum, and energy conservation, and their bo
ary conditions. The second part of the four-part series
scribing the work@14# includes the derivation of the interfac
equation, emerging from this model, and also its solution
a parametric study of the film thickness behavior and an
sis of the related phenomena. Subsequent parts of this s
@15,18# deal with the determination of the rewetting tempe
ture and velocity, by applying additional considerations
thermodynamics and heat transfer.

III. SUMMARY AND CONCLUSIONS

~1! The rewetting phenomena is usually treated as bein
problem of heat and mass transfer, and its modeling is p
.,

a-

-
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ti-
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d-

e-

s
-
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-
f

a
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vided in macroscale geometry. Here the work is concer
with the formulation of a nonisothermal microscal
O(1000 Å), rewetting model. The microscale model is f
cused in a region defined in Ref.@20# as a ‘‘proximal re-
gion.’’ In this region, the intermolecular solid-liquid force
and the effect of contact angle must be accounted for in
momentum balance equation. The contact angle, which
typically very small in rewetting situations@O(1°)#, deter-
mines the geometry as well as the scales of the problem

~2! The nature of the rewetting system, and its small co
tact angle, facilitate, through the use of the well known ‘‘l
brication approximation,’’ considerable simplifications of th
balances equations~mass, momentum, and energy!. Bound-
ary conditions were formulated, both on the solid wall and
the liquid-vapor interface. The force and energy balan
determine the boundary conditions at the liquid-vapor int
face ~i.e., shear stress, normal stress, energy balances,
kinematic condition!.

~3! The boundary conditions, as well as the balance eq
tions, were subjected to a process known as one-sided
plification. This process results in decoupling of the dyna
ics of the liquid and vapor phases. The set of equati
accounts for several physical phenomena at the quench f
This is reflected, for example, in the normal stress bound
condition, where a term is included to describe the kine
energy of evaporated fluid particles at the interface.

~4! The dynamic behavior of the fluid, at and across t
interface, affects the solutions of the thermal and hydro
namic fields. This is due to the dependence of these solut
on the interface profile,h(x). The kinetic energy effect
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where the film is pushed by the evaporating liquid toward
solid wall, is known as the ‘‘recoil effect.’’ In case of inten
sive evaporation, this effect can even cause film rupture

~5! The microscale hydrodynamic model involves t
thermo-capillary numberC/F and the capillary numberC. In
this model,C/F expresses the effect of temperature on
surface tension forces. The occurrence of a temperature
dient along the interface, in rewetting situations, impose
corresponding gradient of surface tension. This changes
interface profile and the contact angle. The capillary num
C provides a measure for the relative effects due to visc
and capillary forces. In rewetting, a film that moves with
smaller quench velocity involves smaller viscosity forc
relative to the surface tension forces. In these cases, the
face tension is more dominant and smaller values of con
angle may be obtained.

~6! The microscale hydrodynamic model reflects t
strong effect of the solid-liquid interactions on the film pr
file, and on the attendant flow and thermal fields. Thin
films, or alternatively smaller contact angles, are associa
with stronger attraction forces between the solid and the
uid molecules. Consequently, rewetting can be establishe
higher temperatures of the solid surface. These attrac
of
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forces also act against the tendency of the liquid to eva
rate.

~7! The evaporation and conduction effects are incor
rated in the dimensionless parameterS. Liquids with higher
values of heat of evaporationHl , are characterized by
smaller values ofS. In this case, the evaporation effect on t
interface solution profile becomes less pronounced. The
verse is also true. The dimensionless parameterE is part of
the kinematic boundary condition. This number also e
presses the evaporation and conduction effects, but in c
trast toS, which depends on the heat of evaporation, it rela
to the kinematic behavior of the liquid-vapor interface. T
case of interface that is impermeable to mass is obtaine
E50.

~8! The microscale nonisothermal hydrodynamic mod
of the quench front forms the basis for analysis of the hyd
dynamics involved in the rewetting phenomena. Howev
rewetting systems are also controlled by their thermodyna
ics, and, hence, the latter must be matched with the solu
of the hydrodynamic model. This calls for the formulation
a combined hydrodynamic-thermodynamic model, for t
description of rewetting phenomena, which is the subjec
the subsequent parts of this series@14,15,18#.
ur-
le

ans.
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